Physics, Dose Metrics and Clinical Implementation of Spatially Fractionated and Microbeam Radiation Therapy

Hualin Zhang, Ph.D., DABR,
Associate Professor
Department of Radiation Oncology
Keck School of Medicine
University of Southern California
Los Angeles, CA

AAPM, Southern California Chapter
January 26, 2024
Conflict of Interest

Hualin Zhang is the co-chair of The Radiosurgery Society (RSS) GRID/Lattice/Microbeam/Flash Radiation Therapy Working Groups.

Otherwise, the contents presented today **do not** have any conflict of interests.

The papers selected in this presentation are mainly based on the level of my familiarity, not because they are more important than others.
Outlines

1. Introduction of Spatially Fractionated Radiation Therapy
2. Dose metrics of GRID and Lattice therapy
3. How to implement an SFRT program in clinic
4. Clinical practice pattern of SFRT
5. Advances in GRID, Lattice, and microbeam Therapy
1. Introduction of Spatially Fractionated Radiation Therapy

- Spatially fractionated radiation therapy evolved from GRID therapy
- GRID therapy was proposed as early as 1950’s, initially for skin cancer treatment to increase tolerance
- GRID therapy deliberately creates hot and cold spots (dose heterogeneity) via a GRID collimator
- Dose intensity modulations happen in 2D- or 3D-space of tumor target volume, which were referred as GRID or Lattice therapy. Official name is Spatially fractionated radiation therapy (SFRT)
- SFRT uses a large peak dose (or called nominal dose), originally only used for one fraction before starting conventional EBRT

Dose Properties of GRID Fields

Source of Photon Beam

Grid Collimator

Tumor Volume

Normal tissue

Tally Points Planes

Film dose measurement

Zhang, *IJROBP*, 2006

Schematic diagram
Lattice Vs GRID

Lattice therapy
• Can effectively spare normal structures,
• Can put high dose vertices to desired locations,
• Cannot maintain large dose modulation, peak/valley dose ratio is smaller than GRID.

GRID therapy
• Can maintain large dose modulation, peak/valley dose ratio is greater than Lattice.
• Can maintain similar dose pattern for different patients,
• Cannot effectively spare normal structures.
The real reasons for improved responses by SFRT remain unclear, biologists believe following effects may have contributed the favorable outcomes.

- SFRT Enhances the ability of normal tissues to repair (better than cancer cells) by additionally lowering normal tissue dose.
- SFRT achieves high tumor cell kill with high (ablative-fraction) dose, creates intensive killing islands, inhibits cancer cell communication.
- SFRT leverages the bystander effects, abscopal effects and cohort effects, which are stronger in the heterogeneous fields.
- SFRT also manifests the early evidence of immuno-modulation effects (in low-dose regions).
2. Dose metrics of GRID and Lattice therapy

✓ Lattice therapy was developed because of the success of GRID therapy,
✓ Lattice therapy takes advantage of the advanced treatment planning system (TPS) and versatility of multileaf collimator (MLC) of modern medical linac machine,
✓ The success of interstitial LDR or HDR brachytherapy may be translated to explain the Lattice, GRID therapy,
✓ Lattice therapy shares many dose parameters with GRID therapy; but Lattice therapy has some unique dose parameters.
Dose Distribution of GRID Therapy

Some treatment planning systems, such as Eclipse, can handle GRID collimator for GRID therapy dose calculation.

Axilla bulky tumor
GRID therapy
Dose Distribution of Lattice Therapy (LRT)

Lattice therapy (LRT) can be designed for any bulky tumors.
The RSS Working Groups recommended dose metrics for GRID and Lattice therapy

<table>
<thead>
<tr>
<th>GRID therapy</th>
<th>Lattice therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescription dose ((D_p, \text{ in Gy}))</td>
<td>Prescription dose ((D_p, \text{ in Gy}))</td>
</tr>
<tr>
<td>Equivalent uniform dose ((\text{EUD, in Gy}))</td>
<td>Equivalent uniform dose ((\text{EUD, in Gy}))</td>
</tr>
<tr>
<td>Planning target volume ((\text{PTV, in cm}^3))</td>
<td>Gross target volume ((\text{GTV, in cm}^3))</td>
</tr>
<tr>
<td>Peak-peak distance at tumor center depth ((\text{cm}))</td>
<td>Volume of Lattice, (V_{\text{lattice}})</td>
</tr>
<tr>
<td>Secondary collimator margin ((\text{cm}))</td>
<td>Volume of Vertices, (V_{\text{vertices}})</td>
</tr>
<tr>
<td>Dose covering 95% of target ((D95, \text{ in Gy}))</td>
<td>Dose covering 95% of target ((D95, \text{ in Gy}))</td>
</tr>
<tr>
<td>Dose covering 90% of target ((D90, \text{ in Gy}))</td>
<td>Dose covering 90% of target ((D90, \text{ in Gy}))</td>
</tr>
<tr>
<td>Dose covering 50% of target ((D50, \text{ in Gy}))</td>
<td>Dose covering 50% of target ((D50, \text{ in Gy}))</td>
</tr>
<tr>
<td>Dose covering 20% of target ((D20, \text{ in Gy}))</td>
<td>Dose covering 20% of target ((D20, \text{ in Gy}))</td>
</tr>
<tr>
<td>Dose covering 10% of target ((D10, \text{ in Gy}))</td>
<td>Dose covering 10% of target ((D10, \text{ in Gy}))</td>
</tr>
<tr>
<td>Dose covering 5% of target ((D5, \text{ in Gy}))</td>
<td>Dose covering 5% of target ((D5, \text{ in Gy}))</td>
</tr>
<tr>
<td>Valley/peak dose ratio at the tumor center depth ((\text{VPDR})) ((\text{from 0.1 to 0.5}))</td>
<td>(D95/D5) ((\text{from 0.2 to 0.5}))</td>
</tr>
<tr>
<td>(D10/D90, \text{ PVDR} \text{ (from 2 to 7)})</td>
<td>(D10/D90, \text{ PVDR} \text{ (from 2 to 5)})</td>
</tr>
<tr>
<td>High dose core number ((> 3))</td>
<td>High dose core number ((> 3))</td>
</tr>
</tbody>
</table>

3. How to implement an SFRT program

Implementing SFRT needs a lot of physics preparation, it will be easier for you to start with GRID therapy ...

(a). GRID collimator commissioning
(b). functionality, safety check, MU delivery limit adjustment, conformality check.
(c). GRID Dicom file importation
(d). Lattice plan creation
(e). Discussing with MD
(f). Discussing with experienced MDs and physicists from outside if felt necessary.
(g). Reading SFRT dosimetric white papers
GRID therapy implementation workflow at USC

1. GRID integrity check
 - #2a. Deliver radiation with GRID, verify MU limit and interlocks on machine
 - #2b. Import GRID DICOM files into TPS

2. Measure dose profiles at various field sizes and depths in water tank
 - #3a.
 - #3b. Measure output factors for various field sizes and depths in water or solid water
 - #3c. Get GRID dose image in solid water phantom with film or portal imaging device
 - #3d. Perform TPS GRID calculation with water phantom to get same datasets as work 3a,3b.

3. Compare experimental data with TPS calculated data
 - #4.

4. Document all data
 - #5.

5. Verified by second physicist
 - #6.
Measurement with a GRID collimator

Zhang, et al. Cancers, 14, 1037, 2022
Percent depth dose and dose profiles at different depths

$d_{\text{max}} = 1.34 \text{ cm}$
GRID Field output factor

Table 1: Comparison of measured and Varian Eclipse TPS calculated 6 MV and 10 MV output factors for various field sizes using a brass GRID block. The OFs were normalized by the OF for a 10x10 cm² field size with the GRID block in place.

<table>
<thead>
<tr>
<th>6 MV Output Factors</th>
<th>Field Size (cm²)</th>
<th>6x6</th>
<th>8x8</th>
<th>10x10</th>
<th>15x15</th>
<th>20x20</th>
<th>25x25</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTW Microdiamond (measured)</td>
<td>0.981</td>
<td>0.990</td>
<td>1.000</td>
<td>1.023</td>
<td>1.042</td>
<td>1.061</td>
<td></td>
</tr>
<tr>
<td>TPS (calculated)</td>
<td>0.977</td>
<td>0.990</td>
<td>1.000</td>
<td>1.013</td>
<td>1.024</td>
<td>1.034</td>
<td></td>
</tr>
<tr>
<td>% Difference</td>
<td>0.41%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.98%</td>
<td>1.73%</td>
<td>2.54%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 MV Output Factors</th>
<th>Field Size (cm²)</th>
<th>6x6</th>
<th>8x8</th>
<th>10x10</th>
<th>15x15</th>
<th>20x20</th>
<th>25x25</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTW Microdiamond (measured)</td>
<td>0.975</td>
<td>0.986</td>
<td>1.000</td>
<td>1.027</td>
<td>1.049</td>
<td>1.069</td>
<td></td>
</tr>
<tr>
<td>TPS (calculated)</td>
<td>0.970</td>
<td>0.987</td>
<td>1.000</td>
<td>1.017</td>
<td>1.028</td>
<td>1.040</td>
<td></td>
</tr>
<tr>
<td>% Difference</td>
<td>0.51%</td>
<td>-0.10%</td>
<td>0.00%</td>
<td>0.97%</td>
<td>2.00%</td>
<td>2.71%</td>
<td></td>
</tr>
</tbody>
</table>
Treatment planning system (TPS) needs to be checked for Grid-collimator based SFRT calculation
Play GRID therapy with a flat-water phantom in TPS
Get DVH curves of target

Zhang, et al. Cancers, 14, 1037, 2022
GRID and Lattice therapy dosimetry white papers and dosimetry consensus.
Lattice therapy dosimetry white paper
Dosimetry consensus.

Vertex diameter $d = 0.5\text{–}1.5$ cm
Vertices separation $D = 2.0\text{–}5.0$ cm
$V_\text{vertices}/V_\text{GTV}$ (volume ratio): $1.0\text{–}10.0\%$
$Dose_\text{vertices}$: $10\text{–}25$ Gy per fraction
$Dose_\text{valley}$: <5 Gy per fraction
$Dose_\text{GTV margin}$: $2\text{–}5$ Gy
GTV: ≥ 50 cc

FIG. 4. Parameters and ranges of a typical LRT plan.
4. Clinical practice pattern of SFRT

Clinical practice is the SFRT’s real driving force, new progress is made almost in every month

- More than 3000 patients have been treated by GRID therapy.¹
- 1000 patients have been treated by Lattice therapy.¹
- SFRT has been used for both the definitive and palliative treatments.²
- Presently, the main goal for implementation of SFRT should be to ensure that plans are delivered with maximal safety.³

1) Spatially fractionated .. SFRT Book, Hualin Zhang, Nina Mayr, IOP 2023
Currently as our survey reported, half of SFRT patients are treated by GRID, another half by Lattice.

Figure from: Heather N et al. Med Dosim 2014; 39: 218-26

Figure from: Amendola BA et al. Clin Transl Rad Oncol 2018; 9: 68-71
In clinical SFRT practice, clinicians often want to know:

a) What disease sites have been safely treated by SFRT?
b) What dose regimens (dose size, fraction number) have been used by practitioners?
c) When should we use GRID/Lattice, how long gap before or after conventional RT?
d) What treatment regimens should we use, solo or adjuvant?
e) How should we arrange following treatments?
f) How should we evaluate the SFRT responses?
g) Should we go through an IRB approval?
RSS Workgroups SFRT clinical effort #1: Head/neck, Sarcoma cancer SFRT clinical trial design consensus

Scientific Article

An International Consensus on the Design of Prospective Clinical—Translational Trials in Spatially Fractionated Radiation Therapy

Nina A. Mayr, MD, a,b,* James W. Snider, MD, c William F. Regine, MD, d Majid Mohiuddin, MD, e Daniel S. Hippe, MS, f José Peña García, MD, g Mohammed Mohiuddin, MD, h Mahesh R. Kudrimoti, MD, i Hualin Zhang, PhD, j Charles L. Limoli, PhD, k Quynh-Thu Le, MD, l and Charles B. Simone, II, MD m

aDepartment of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington; bTumor Heterogeneity Imaging and Radiomics Laboratory, University of Washington School of Medicine, Seattle, Washington; cDepartment of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama; dDepartment of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; eRadiation Oncology Consultants and Northwestern Proton Center, Warrenville, Illinois; fClinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; gMoffitt Cancer Center, Tampa, Florida; hRadiation Oncology, Scottsdale, Arizona; iDepartment of Radiation Medicine, University of Kentucky College of Medicine, Lexington, Kentucky; jDepartment of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; kDepartment of Radiation Oncology, University of California School of Medicine, Irvine, Irvine, California; lDepartment of Radiation Oncology, Stanford University, Stanford, California; mDepartment of Radiation Oncology, New York Proton Center, New York, New York
An International Consensus on the Design of Prospective Clinical–Translational Trials in Spatially Fractionated Radiation Therapy for Advanced Gynecologic Cancer

Beatriz E. Amendola 1, Anand Mahadevan 2, Jesus Manuel Blanco Suarez 3, Robert J. Griffin 4, Xiaodong Wu 5, Naipy C. Perez 1, Daniel S. Hippe 6, Charles B. Simone II 7, Majid Mohiuddin 8, Mohammed Mohiuddin 9, James W. Snider 10, Huaiin Zhang 11, Quynh-Thu Le 12 and Nina A. Mayr 13,*

1. Innovative Cancer Institute, South Miami, FL 33143, USA
2. Department of Radiation Oncology, New York University, Langone Health, New York, NY 10016, USA
3. Department of Radiation Oncology, Dr. Negrin University Hospital, 35010 Las Palmas de Gran Canaria, Spain
4. Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
5. Executive Medical Physics Associates, Miami, FL 33179, USA
6. Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
7. Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA
8. Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, IL 60555, USA
9. Radiation Oncology, Scottsdale, AZ 85258, USA
10. Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
11. Department of Radiation Oncology, University of Southern California, Los Angeles, CA 90033, USA
12. Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
13. College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
* Correspondence: nar_mayr@yahoo.com
RSS Workgroup SFRT clinical effort #3: A survey report of clinical practice pattern of SFRT

Scientific Article

Practice Patterns of Spatially Fractionated Radiation Therapy: A Clinical Practice Survey

Nina A. Mayr, MD,¹,* Majid Mohiuddin, MD,¹ James W. Snider, MD,² Hualin Zhang, PhD,³ Robert J. Griffin, PhD,⁴ Beatriz E. Amendola, MD,⁵ Daniel S. Hippe, MS,⁶ Naipy C. Perez, MS,⁶ Xiaodong Wu, PhD,⁷ Simon S. Lo, MD,⁸ William F. Regine, MD,⁹ and Charles B. Simone II, MD¹⁰

¹College of Human Medicine, Michigan State University, East Lansing, Michigan; ²Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, Illinois; ³Radiation Oncology, South Florida Proton Therapy Institute, Delray Beach, Florida; ⁴Department of Radiation Oncology, University of Southern California, Los Angeles, California; ⁵Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ⁶Innovative Cancer Institute, Miami, Florida; ⁷Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington; ⁸Executive Medical Physics Associates, Miami, Florida; ⁹Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington; ¹⁰Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland; and ¹¹Department of Radiation Oncology, New York Proton Center, New York, New York

Received 13 February 2023; accepted 26 June 2023
Disease sites and percentage of usage for SFRT

Figure shows the distribution of disease sites treated with spatially fractionated radiation therapy (SFRT). Proportions of radiation oncologists using SFRT for specific tumor types and tumor sites are presented.
SFRT clinical practice pattern

- The majority of practicing radiation oncologists (United States, 100%; global, 72.7%) considered SFRT an accepted standard-of-care radiation therapy option for bulky/advanced tumors.

- Treatment of metastases/recurrences and nonmetastatic primary tumors, predominantly head and neck, lung cancer and sarcoma, was commonly practiced.
SFRT clinical practice pattern _ cont.

- In palliative SFRT, regimens of 15 to 18 Gy/1 fraction predominated (51.3%), and in curative-intent treatment of nonmetastatic tumors, 15 Gy/1 fraction (28.0%) and fractionated SFRT (24.0%) were most common.

- SFRT was combined with cERT commonly but not always in palliative (78.6%) and curative-intent (85.7%) treatment. SFRT–cERT time sequencing and cERT dose adjustments were variable.
In curative-intent treatment, concurrent chemotherapy and immunotherapy were found acceptable by 54.5% and 28.6%, respectively.

Use of SFRT dosimetric parameters was highly variable and differed between GRID and LRT. SFRT heterogeneity dosimetric parameters were more commonly used (P = .008) and more commonly thought to influence local control (peak dose, P = .008) in LRT than in GRID therapy.
5. Advances in GRID and Lattice Therapy

Over the past seven decades, GRID therapy developed slowly but steadily. Before 2010, GRID therapy was used in a simple way, Lattice therapy had not been developed.

Before 2010,

- We only knew the peak dose and valley dose at the prescription depth.
- DVHs of target and OARs were unknown.
- TPS could not handle dose calculations of multiple apertures or GRID fields.
- Most cases were for palliative treatments.
Nowadays, GRID and Lattice therapy has been significantly improved.

After 2010, GRID therapy can be planned by TPS, Lattice therapy is increasingly used.

Some TPS can calculate the DVHs of target and OARs in GRID therapy. You can adjust a GRID/Lattice therapy plan based on the dose calculation results.

We can use MLC to form a GRID or Lattice therapy.

GRID and Lattice therapy is used for both the palliative and definitive treatments.

Many different beams (photon, proton, electron, microbeam) can be used to deliver GRID/Lattice therapy.
Pilot study 1: Combine LRT with conventional SBRT

LRT was split into multiple fractions, combined with the SBRT, so a very low valley dose was not particularly pursued.

Advantage: After multiple fractions of LRT, there is no need for additional EBRT.

Disadvantage: Spatial dose modulation is limited, SFRT benefits need to be clinically verified.

The pilot study was carried out by Washington University Group.

Sai Duriseti, MD, PhD, James Kavanaugh, MS, et al, Advances in Radiation Oncology: May-June 2021 Lattice ablative
Pilot study 2: mix multiple fractions of LRT into conventional EBRT

Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma

Neoadjuvant radiation therapy
multi-fractions of LRT + multi-fractions of cEBRT
First fraction LRT was given 7 days before starting c-EBRT. 4 fractions of LRT were given between 21 fractions of cEBRT.

Question #1: when should we start c-EBRT after SFRT?

Question #2: if it is still or more beneficial when multiple fractions of SFRT are given during c-EBRT?

Answers remain unknown. The questions will be answered through more clinical trial data.

First SFRT Textbook was published in June of 2023

A Physics textbook in the multi-disciplinary (clinical and biology) context

A Textbook of GRID/Lattice/Flash Radiation Therapy

Contributions from 45 world experts, 23 chapters.

I: Biology and Clinical Use
 (1) Biological basis of SFRT, Microbeam and FLASH therapy and
 (2) Clinical use and early data

II: Physics of Conventional-dose-rate SFRT
 (1) Methods, modalities and platform,
 (2) dosimetric considerations and planning,
 (3) Monte Carlo modelling of SFRT

III: Physics of Microbeam, Mini-beam SFRT and Ultra-high Dose Rate FLASH Radiation Therapy
 Potential applications of microbeam, minibeam and FLASH
Photon microbeam and proton mini-beam SFRT

Preclinical mini- and micro-beam based SFRT studies have shown a drastic increase of radiation response.

Figure 20.1. The evolution of SFRT from a uniform field to an array of micron-wide microbeams. Created with BioRender.com.

The reasons of drastically increased radiation response of micro- and mini-beam based SFRT are likely due to

- There are more high-dose and cold-dose cores than MV GRID
- Dose rate is higher than MV GRID
- PVDR is much higher than MV GRID
- Bystander, abscopal effects are stronger in micro- and min-beam based SFRT because of many more high-dose and cold dose cores

Min- and Microbeam-based SFRT has become a hot research topic of radiation biology

Our mission is to provide a better way to cure or control cancers, and eventually to prolong our patients’ lives.

Can we make a difference with SFRT?

We optimistically say “Yes”!

Our ongoing and new SFRT clinical trials will bring new hopes to our patients.
Thanks for your attention!

Hualin.Zhang@med.usc.edu

Questions or comments?